A New Minimum Principle for Lagrangian Mechanics

نویسندگان

  • Matthias Liero
  • Ulisse Stefanelli
چکیده

We present a novel variational view at Lagrangian mechanics based on the minimization of weighted inertia-energy functionals on trajectories. In particular, we introduce a family of parameter-dependent global-in-time minimization problems whose respective minimizers converge to solutions of the system of Lagrange’s equations. The interest in this approach is that of reformulating Lagrangian dynamics as a (class of) minimization problem(s) plus a limiting procedure. The theory may be extended in order to include dissipative effects thus providing a unified framework for both dissipative and nondissipative situations. In particular, it allows for a rigorous connection between these two regimes by means of Γ -convergence. Moreover, the variational principle may serve as a selection criterion in case of nonuniqueness of solutions. Finally, this variational approach can be localized on a finite time-horizon resulting in some sharper convergence statements and can be combined with timediscretization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic algorithm-based approach for numerical solution of droplet status after Coulomb fission using the energy

As a droplet moves, due to evaporation at the surface, the droplet size is gradually reduced. Due to decreasing the size of the droplets moving in the spray core, the surface charges become closer and the repulsive force between the charges increases. When the Coulombic force overcomes the surface tension force (Rayleigh instability) the droplet breaks into smaller droplets (Coulomb fission). T...

متن کامل

Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints

Since its inception about 200 years ago, Lagrangian mechanics has been based upon the Principle of D’Alembert. There are, however, many physical situations where this confining principle is not suitable, and the constraint forces do work. To date, such situations are excluded from general Lagrangian formulations. This paper releases Lagrangian mechanics from this confinement, by generalizing D’...

متن کامل

Nonlinear Vibration Analysis of the Composite Cable using Perturbation Method and the Green-Lagrangian Nonlinear Strain

In this study, nonlinear vibration of a composite cable is investigated by considering nonlinear stress-strain relations. The composite cable is composed of an aluminum wire as reinforcement and a rubber coating as matrix. The nonlinear governing equations of motion are derived about to an initial curve and based on the fundamentals of continuum mechanics and the nonlinear Green-Lagrangian stra...

متن کامل

Lagrangian Mechanics and Reduction on Fibered Manifolds

This paper develops a generalized formulation of Lagrangian mechanics on fibered manifolds, together with a reduction theory for symmetries corresponding to Lie groupoid actions. As special cases, this theory includes not only Lagrangian reduction (including reduction by stages) for Lie group actions, but also classical Routh reduction, which we show is naturally posed in this fibered setting. ...

متن کامل

Lagrangian Densities and Principle of Least Action in Nonrelativistic Quantum Mechanics

The Principle of Least Action is used with a simple Lagrangian density, involving second-order derivatives of the wave function, to obtain the Schrödinger equation. A Hamiltonian density obtained from this simple Lagrangian density shows that Hamilton’s equations also give the Schrödinger equation. This simple Lagrangian density is equivalent to a standard Lagrangian density with first-order de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013